Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547622

RESUMO

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliais da Veia Umbilical Humana , Óxido Nítrico Sintase Tipo III , Transdução de Sinais , Trombospondina 1 , Animais , Humanos , Antraquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Ratos , Camundongos , Ratos Sprague-Dawley , Endotélio Vascular/efeitos dos fármacos , Glucose/metabolismo , Camundongos Endogâmicos C57BL
2.
Food Chem X ; 21: 101032, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235343

RESUMO

Numerous health hazards have been connected to advanced glycation end products (AGEs). In this investigation, using reaction models including BSA-fructose, BSA- methylglyoxal (MGO), and BSA-glyoxal (GO), we examined the anti-glycation potential of eight different berry species on AGEs formation. Our results indicate that black chokeberry (Aronia melanocarpa) exhibited the highest inhibitory effects, with IC50 values of 0.35 ± 0.02, 0.45 ± 0.03, and 0.48 ± 0.11 mg/mL, respectively. Furthermore, our findings suggest that black chokeberry inhibits AGE formation by binding to BSA, which alleviates the conformation alteration, prevents protein cross-linking, and traps reactive α-dicarbonyls to form adducts. Notably, three major polyphenols, including cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, and procyanidin B2 from black chokeberry, showed remarkably inhibitory effect on MGO/GO capture, and new adducts formation was verified through LC-MS/MS analysis. In summary, our research provides a theoretical basis for the use of berries, particularly black chokeberry, as natural functional food components with potential anti-glycation effects.

3.
Invest Ophthalmol Vis Sci ; 64(4): 12, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37043340

RESUMO

Purpose: The proliferation, migration, and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) are believed to be the pathological mechanisms underlying anterior subcapsular cataract (ASC). Bone morphogenetic proteins (BMPs) inhibit transforming growth factor-beta (TGF-ß)-induced fibrosis in the lens. Herein, we aimed to further clarify the roles of BMP-4/BMP-7 in the progression and the underlying mechanisms of fibrotic cataract. Methods: BMP-4/BMP-7, TGF-ß2, jagged-1 peptide, or DAPT were applied in a mouse injury-induced ASC model and in the human LEC cell line SRA01/04. The volume of opacity was examined by a slit lamp and determined by lens anterior capsule whole-mount immunofluorescence. Global gene expression changes were assessed by RNA sequencing, and the levels of individual mRNAs were validated by real-time PCR. Protein expression was determined by the Simple Western sample dilution buffer. Cell proliferation was examined by CCK8 and EdU assays, and cell migration was measured by Transwell and wound healing assays. Results: Anterior chamber injection of BMP-4/BMP-7 significantly suppressed subcapsular opacification formation. RNA sequencing of the mouse ASC model identified the Notch pathway as a potential mechanism involved in BMP-mediated inhibition of ASC. Consistently, BMP-4/BMP-7 selectively suppressed Notch1 and Notch3 and their downstream genes, including Hes and Hey. BMP-4/BMP-7 or DAPT suppressed cell proliferation by inducing G1 cell cycle arrest. BMP-4/BMP-7 also inhibited TGF-ß2-induced cell migration and EMT by modulating the Notch pathway. Conclusions: BMP-4/BMP-7 attenuated ASC by inhibiting proliferation, migration, and EMT of LECs via modulation of the Notch pathway, thereby providing a new avenue for ASC treatment.


Assuntos
Opacificação da Cápsula , Catarata , Cristalino , Camundongos , Animais , Humanos , Fator de Crescimento Transformador beta2/farmacologia , Transição Epitelial-Mesenquimal , Proteína Morfogenética Óssea 7/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Catarata/metabolismo , Cristalino/metabolismo , Transdução de Sinais , Proliferação de Células , Movimento Celular , Células Epiteliais/metabolismo , Opacificação da Cápsula/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA